
 The Ultimate Mac Cracking
 Guide
(See next chapter for part 2 of 2)

 ---===< Intro >===---

Well I realized that it might be difficult for people to
understand what I'm talking about if they can't try it
themselves. So, I threw together a little program called CrackIt.
CrackIt allows you to choose between three different types of
protection systems and to try and crack each one. And the best
thing about it is that it's 100% legal to crack this program (you
have my permission! As a matter of fact, that's what it is for!)
And since I wrote it, it's legal for me to describe how to crack
it! These odds I like! But let me warn you again that cracking
commercial software is illegal! And remember that we're trying
to fight big corportations monopolizing the computer hardware and
software industries. So support sharewares by paying for them!

---===< Reg Type 1>===---

OK, let's have a look at CarckIt! As I said before, this is a
very simple program, but great for practicing cracking! And the
best of it all is that it's LEGAL to crack this program!

Select "Reg Type 1" from the File menu! A dialog box appears and
you are asked to enter your reg name and reg number. Do the usual
procedure and type in your reg name into the dialog box. Then
type in the number: 12345678 and go into MacsBug. Initiate the
break for the a-trap "modaldialog" by issuing the command "atb
modaldialog". Return to CrackIt by issuing the return command
"g", and finish the registration number by typing "9".

This time you should be dropped straight into MacsBug. Now trace
over the modaldialg a-trap with the "t" command. And in CrackIt
click on the "Register" button. Once again you should be in
MacsBug, and now we're ready to follow through the code!

This is what you should see once you start traceing trough the
code from here: (the lines starting with two stars, **, are
commands that I issued to MacsBug. They would not appear if you
were simply traceing trough the code)

 Scramble
 +0032A 00C9369A MOVE.W $003C(A6),D0 |
302E 003C
 +0032E 00C9369E CMPI.W #$0001,D0 |
0C40 0001
 +00332 00C936A2 BEQ Scramble+00344 ; 00C936B4 |
6700 0010
 +00344 00C936B4 MOVE.L $0038(A6),-(A7) |
2F2E 0038
 +00348 00C936B8 MOVE.W #$0003,-(A7) |
3F3C 0003
 +0034C 00C936BC PEA $0044(A6) |
486E 0044
 +00350 00C936C0 PEA $0040(A6) |
486E 0040
 +00354 00C936C4 PEA $0046(A6) |
486E 0046
 +00358 00C936C8 _GetDialogItem ; 0028F168 |
A98D
 +0035A 00C936CA MOVE.L $0040(A6),-(A7) |
2F2E 0040
 +0035E 00C936CE PEA $004E(A6) |
486E 004E
 +00362 00C936D2 _GetDialogItemText ; 0028ECD4 |
A990
 **Displaying memory from a1
 00C93AFD 5072 6F5A 6171 0000 0000 0000 0000 0000 ProZaq••••••••••
Step (over)
 Scramble
 +00364 00C936D4 MOVE.L $0038(A6),-(A7) |
2F2E 0038
 +00368 00C936D8 MOVE.W #$0006,-(A7) |
3F3C 0006
 +0036C 00C936DC PEA $0044(A6) |
486E 0044
 +00370 00C936E0 PEA $0080(A6) |
486E 0080
 +00374 00C936E4 PEA $0084(A6) |
486E 0084
 +00378 00C936E8 _GetDialogItem ; 0028F168 |
A98D
 +0037A 00C936EA MOVE.L $0080(A6),-(A7) |
2F2E 0080
 +0037E 00C936EE PEA $008C(A6) |
486E 008C
 +00382 00C936F2 _GetDialogItemText ; 0028ECD4 |
A990
 **Displaying memory from a1
 00C93B3B 3132 3334 3536 3738 3900 0000 0000 0000 123456789•••••••
Step (over)
 Scramble
 +00384 00C936F4 RTS |
4E75
 +00034 00C933A4 BSR Scramble+00386 ; 00C936F6 |
6100 0350

 +00038 00C933A8 LEA $008C(A6),A0 |
41EE 008C
 **Displaying memory from a0
 00C93B3A 0931 3233 3435 3637 3839 0000 0000 0000 •123456789••••••
Step (over)
 Scramble
 +0003C 00C933AC MOVE.W #$0001,-(A7) |
3F3C 0001
 +00040 00C933B0 _StringToNum ; BinDecConv |
A9EE
 **D0 = $075BCD15 #123456789 #123456789 '•[Õ•' (between #117M and #118M)
Step (over)
 Scramble
 +00042 00C933B2 CMPI.L #$646F726B,D0 ; 'dork' |
0C80 646F 726B
 +00048 00C933B8 BEQ Scramble+003B0 ; 00C93720 |
6700 0366
 +0004C 00C933BC BRA Scramble+0039E ; 00C9370E |
6000 0350
 +0039E 00C9370E CLR.W -(A7) |
4267
 +003A0 00C93710 MOVE.W #$0071,-(A7) |
3F3C 0071
 +003A4 00C93714 CLR.L -(A7) |
42A7

Well... This is NOT supposed to be a tutorial on programing in
assembely so I will not bore you with programing stuff! Notice
this, however! Before every _GetDialogItem a-trap there is a
bunch of shit pushed onto the stack with the "PEA" command.
After every _GetDialogItem a-trap, there is a _GetDialogItemText
a-trap. And once this a-trap is complete address register one
points to a location in the memory containing the registration
info. The first _GetDialogItemText occurs at offset +362. And
straight after that I issued the following command in MacsBug "dm
a1" (display memory from address register one). And as I
predicted, a1 contained my registration name! The next
_GetDialogItemText a-trap in turn puts my reg number in a1.

At offset +384, there is a return from sub routine command "RTS",
meaning that we have exited the section of the program dealing
with getting information from the dialog box.

Straight after the RTS command at offset +34 the program will
branch off to another subroutine. That is not important for now!
I simply traced over it. But what do I see immediately after the
subroutine? A command pushing an address into a0! So imediately
I figure out that something is going to happen, or has happened
to a0. Therefore, I issue the "dm a0" command. And I notice that
a0, contains the Pascal format of my registration number. (In
Pascal strings the first byte is always the number of letters

used in the string. eg: 1234=ASCII: 31323334. In Pascal this
string would be represented as: 04 31323334. Don't worry about
it! I read somewhere that Pascal was not designed for human use
and I completely aggree with it!)

Anyway, after this is another a-trap. The _StringToNum trap is
used to convert ASCII values into hexadecimal form (it has some
other uses as well). How do I know? Well, have a look at data
register zero. D0=075BCD. If you type "d0" into MacsBug, it will
show you the current value stored in d0. I did that, and I
imideately noticed that the number stored in d0 was actually the
hex value of my registration number!

This is important! You should ALWAYS be able to recognize the hex
value of your reg number! So before cracking make sure you
convert your reg number to hex!

At offset +42 we find this command:

 +00042 00C933B2 CMPI.L #$646F726B,D0 ; 'dork' | 0C80
646F 726B

This instruction compares the number in d0 to $646F726B. Why does
it say "dork" you ask? Well to the best of my knowledge the
hexadecimal values of the ASCII letters "dork" = $646F726B.
After this command there is a conditional which will not branch
and after that an alert box greets me saying that I entered the
wrong reg number. At this point it is very safe to conclude that
it is the conditional at offset +48 that needs to be changed.

Launch CrackIt again, and repeat the above procedures so that you
end up at the conditional at offset +48. (Of course you didn't
forget to clear the a-traps did you with the "atc" command? Also,
don't worry if the hex number next to the offsets do not match!
Those are the values of the current locations that the program
occupies in the RAM, and will most likely vary every time you
launch CrackIt.)

So you've come to this conditional once again. As you may notice,
it says "Will not Branch" above the current instruction in
MacsBug. This means that the conditions are not met for it to
branch. However, MacsBug does show, where it WOULD HAVE
branched. Using my values (this will be different for you) it
was the address: C93720. I found out where it was going to branch
by reading the value next to the current command, which was
C93720. From the second part of The Ultimate Cracking Guide you
might remember that you go to a particular address in the memory

by issuing the command "pc=address value", in this case
"pc=C93720". Once you've done that, clear the a-traps "atc", and
let CrackIt take control again with the "g" command. And presto,
the "thank you for registering" dialog shows up!

So how would I change this branch permanantly? Open up CrackIt
with Super ResEdit. Open up the resource "CODE" and resource ID
2. Activate the hex editor (if it's not active) and find offset
48. (Find menu, "Find offset" or Apple-H) This should have
selected the number 67 in the hex editor window. If you want, you
can activate the code editor window, and notice that the first
two digits have been selected of the machine code part of the
code responsible for the conditional. Now, activate the hex
editor window again and type "60". 60 is the machine code for
"BRA" and since we wanted the command to "always branch" we
changed it to "BRA". If you now have a look in the code editor
window, the "BEQ" command should have changed to "BRA". It is
very important that you only change the first two digits! If you
change any more digits, your computer will freeze for sure when
you launch CrackIt again! If you think you did all right, save
your work and quit Super ResEdit. Launch CrackIt again, and
select "Reg Type 1" from the File menu. And if you did everything
correctly, then no matter what you entered as a reg number you
will always get the "good reg number" dialog! In this particular
example it was not necessary for you to change the code with
Super ResEdit. You would, however, need to change the actual code
of the application if the program checked your registration every
time it was launched. But if it's enough to crack it with
MacsBug, then don't bother changing the code with ResEdit!

---===< Cracking Reg Type 3 (Being a Serial Killer) >===---

I will not deal with how to crack Reg Type 2, as it is not
complicated at all, and if you can't crack it, then you can
always refer to the user's manual or the source code, which
describes in detail what is going on!

Anyway, Reg Type 3. This is a bit of a bitch. And since I haven't
covered the concept of "being a serial killer" yet I will not
discuss how to do a physical crack for this, but rather how to
find a correct registration number for a certain registration
name! If you have tried to crack Reg Type 3 using the previous
method you might have found it a bit tedious. Although far from
being good, Reg Type 3 is maybe the type of protection you could
expect from a medium sized shareware. And in some situations it
is a lot easier to actually find a correct serial number then to

follow through the code then to change zillions of conditionals!
So what are the main differences?

When trying to find a valid serial number, we are not looking for
a conditional specifically, but for the section of the code
generating the correct registration number. When finding serial
numbers we don't really care what type of protection systems the
software uses. We just wanna find that place where the program
enters the algorithm for determining a valid serial number for a
specific registration name, and figure out what it does.

Reg Type 3 uses a very simple algorithm for determining the valid
registration number, and does not hide this algorithm much
either. So let's get CrackIt running and do the modaldialog a-
traps. After returning from the subroutine dealing with getting
information from the dialog box (the same routine that is used in
Reg Type 1 and 2), you will find a subroutine, this one is used
to dispose the dialog box (nothing to worry about).

After that you have the first trick of Reg Type 3. This is the
easiest protection type and is used rather heavily by software
developers. It mearly checks how many letters there are in the
reg name and if there are too many or not enough letters (max. 10
in this case), the "wrong number" dialog will appear.

After this there is the already familiar _StringToNum a-trap
which converts the entered reg number to hex. And after that
there are two subroutines, if you trace over them you will find
that the second one brings up the "wrong number" dialog.
Therefore, something important must occur in one of those
routines!
So, step into that first routine.

 Scramble
 +00124 004B59C4 LEA $004E(A6),A0 |
41EE 004E
 +00128 004B59C8 BSR Scramble+00242 ; 004B5AE2 |
6100 0118

Oh great straight away another subroutine! Step into that one
too:

 Scramble
 +00242 004B5AE2 MOVE.L D0,D7 |
2E00
 +00244 004B5AE4 CLR.L D0 |
4280
 +00246 004B5AE6 CLR.L D1 |
4281

 +00248 004B5AE8 CLR.L D2 |
4282
 +0024A 004B5AEA CLR.L D4 |
4284
 +0024C 004B5AEC MOVE.B (A0)+,D0 |
1018
 +0024E 004B5AEE BSR Scramble+0007C ; 004B591C |
6100 FE2C

Well this is interesting. Clearing data registers... This looks
like preparation for something. If you care to take a look at the
address registers, you will find out even more! Anyway, step into
the subroutine at +24E:

 Scramble
 +0007C 004B591C MOVE.B (A0)+,D1 |
1218
 +0007E 004B591E ADD.W D1,D2 |
D441
 +00080 004B5920 SUBI.B #$01,D0 |
0400 0001
 +00084 004B5924 TST.B D0 |
4A00
 +00086 004B5926 BNE Scramble+0007C ; 004B591C |
6600 FFF4
 +0007C 004B591C MOVE.B (A0)+,D1 |
1218
 +0007E 004B591E ADD.W D1,D2 |
D441
 +00080 004B5920 SUBI.B #$01,D0 |
0400 0001
 +00084 004B5924 TST.B D0 |
4A00

Oh great! We just stepped into a loop! (And not even a good one
as it doesn't use the loop command) Let's try to figure out what
it does!

First, it moves the byte from a0 into d1, with post increment. If
you take a look at a0 ("dm a0") before and after the command you
will find that the first letter in your reg name was put into d0,
and a0 is now pointing to the second letter in your reg name.
Then d1, is added to d2 (which is zero to start out with).

What was the value of d0 until now? Well gosh... That just
happened to be the number of letters used in the registration
name. And now one is subtracted from it... At offset +84 d0 is
tested. And since it wasn't zero it branched to the beginning of
the subroutine!

OK! Let's try to figure out what's going on here! Since it's a
loop it's repetitive, and it repeats itself as many times as

there are letters in the reg name. And it adds the ASCII values
to d2. Meaning that it adds up the ASCII values used in the reg
name! Great! We've got the first step! Now how to break outa this
loop? If you recall I described how to use the "br" (break)
command in the last part of The Ultimate Mac Cracking Guide. To
use the break command you have to specify, which memory address
you want the break to occur at (at which point you want to be
dropped into MacsBug again). In this situation we want to enter
MacsBug after the conditional at offset +86. In the above exert,
that is the MOVE.B command, but in reality the MOVE.B command is
the beginning of the loop. And what comes after the conditional
is a RTS command. So I simply specify the address of the RTS
instruction in the RAM, which in this case is 04B592A. (see
below) And after issuing the "g" command I'm dropped into MacsBug
when the loop is completed. Now it is time to clear that break
point with the "brc" command.

Let's have a look at d2! If you add up the ASCII values in your
registration name you will find it to equal the value in d2.

And on we go. Here's that RTS command and what follows after it!

 +0008A 004B592A RTS |
4E75
 +00252 004B5AF2 LEA $004E(A6),A0 |
41EE 004E
 +00256 004B5AF6 MOVE.B (A0)+,D0 |
1018
 +00258 004B5AF8 MOVE.L D2,D3 |
2602

Another couple of commands that look like some preparations,
followed by a subroutine. Let's step into it.

Step (into)
 Scramble
 +0025A 004B5AFA BSR Scramble+00276 ; 004B5B16 |
6100 001A
 +00276 004B5B16 MOVE.B (A0)+,D1 |
1218
 +00278 004B5B18 MULU.L D1,D2 |
4C01 2000
 +0027C 004B5B1C ADD.W D2,D4 |
D842
 +0027E 004B5B1E MOVE.L D3,D2 |
2403
 +00280 004B5B20 SUBI.B #$01,D0 |
0400 0001
 +00284 004B5B24 TST.B D0 |
4A00
 +00286 004B5B26 BNE Scramble+00276 ; 004B5B16 |

6600 FFEE
 +00276 004B5B16 MOVE.B (A0)+,D1 |
1218
 +00278 004B5B18 MULU.L D1,D2 |
4C01 2000
 +0027C 004B5B1C ADD.W D2,D4 |
D842
 +0027E 004B5B1E MOVE.L D3,D2 |
2403
 +00280 004B5B20 SUBI.B #$01,D0 |
0400 0001
 +00284 004B5B24 TST.B D0 |
4A00
**Break at 004B5B2A (Scramble+0028A) every time
**Breakpoint at 004B5B2A Scramble+0028A
 **All breakpoints cleared

Oh great! Another loop! So what's this one doing? Well once more
we have the reg name in a0, and at the beginning of the
subroutine (the beginning of the loop) the next letter in line in
the reg name is moved to d1. Then d2 is multiplied by d1.
Remember what was in d2? The sum of the ASCII values of the
letters used as the reg name. Then d2 is added to d4, and d2 is
replaced by d3, which is the sum of the reg name. D0 is once more
the counter, as it contains the number of letters used in the reg
name. At offset +280 d0 is updated and at offset +284 d0 is
compared to zero. And as long as it doesn't equal zero it will
branch to the beginning of the subroutine. To break out of this
loop I used the "br" command again. (You can see this from the
notes that were given to me by MacsBug.) If you use break
commands, don't forget to clear them with the "brc" command once
yer done with them!

OK, so I'm outa the loop, here's what happens.

 +0028A 004B5B2A RTS |
4E75
 +0025E 004B5AFE RTS |
4E75

The "RTS" commands are used since it is done with the
subroutines. And after that there is yet another subroutine:

Step (into)
 Scramble
 +0012C 004B59CC BSR Scramble+00260 ; 004B5B00 |
6100 0132
 +00260 004B5B00 CMP.L D4,D7 |
BE84
 **D4 = $000095C9 #38345 #38345 '••ï…' (between #37K and #38K)
 +00262 004B5B02 BNE Scramble+0039E ; 004B5C3E |
6600 013A

 +0039E 004B5C3E CLR.W -(A7) |
4267
 +003A0 004B5C40 MOVE.W #$0071,-(A7) |
3F3C 0071
 +003A4 004B5C44 CLR.L -(A7) |
42A7
 +003A6 004B5C46 _Alert ; 002E81F0 |
A985

Remember what was stored in d7? The hex value of the reg number
that you used! And now it's comparing d4 to your reg number.
What is in d4? Well in the last subroutine d4 was used as the
register where the numbers were added to each other. And if you
follow the code a bit more you will notice that the two values
(d4 and d7) don't match and therefore it branches off to a
routine that puts up the alert dialog box informing us that we
entered the wrong reg number. So, we've hit a very important part
of the code. The program is now done with putting your reg name
through the algorithm and now compares the reg number you entered
to the valid one. Now, you ask yourself, what is the valid one?
Well, it is the value stored in d4. In my case hex: 95C9 or dec:
38345 (I issued the "d4" command to find out what the decimal
value of d4 was). So the simplest thing is simply to clear all a-
traps and break points and go back to CrackIt. Let it inform you
that you entered the wrong reg number, and the next time you
select "Reg Type 3" from the File menu, enter 38345 (or whatever
value was in d4 for you) and you should get the "thanx for
registering" dialog! That is, only if you used the same reg name
as you did before!

So the first way to find valid serial numbers is to follow
through the code until it is done with the registration
algorithm, and then find the conditional where it compares the
valid reg number to the reg number you entered. And after that,
simply get the correct value and the next time the reg dialog
shows up enter that as the reg number!

The other way is to do all the calculations yourself. I used
"ProZaq" as a registration name and here's what the program did
to it to calculate the correct reg number (this is all in hex):

First it added up the ASCII values of the string "ProZaq":
50+72+6F+5A+61+71=25D

Then it multiplied the ASCII value of each letter by the previous
sum (25D) and added them up:
(50*25D)+(72*25D)+(6F*25D)+(5A*25D)+(61*25D)+(71*25D)=595C9

Ha Ha! You say! That is not the value that was stored in d4!
Well... Why don't you observe the last part of the algorithm a
bit more! Whenever a number is added to d4 the size of the
number is a word. Meaning that d4 will only contain a number the
size of a word, which in assembly means that it can only be four
digits long. Therefore, 595C9 becomes 95C9. And THAT is the
correct value!

I can recommend you to read article "HOW TO BECOME A SERIAL
KILLER" written by =-BOOK-WORM->. It's a nice file, however, it
has one big fault! The author uses BASIC to create a program that
will generate the serial number for you! (Doesn't BASIC ever get
outdated?)

I on the other hand, recommend people to use the wonderful demo
of PowerFantasm by Lightsoft. PowerFantasm is an assembly
language compiler. And since you can create your own programs
even with the demo (I haven't had a look at version 5 yet, but
you could with 4.xx) it's bloody pointless to try and convert
assembly commands into any other language. Also, the PowerFantasm
demo comes with a lovely tutorial on how to program in assembly
language! What more could you ask for?

Continued, next chapter...

